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SUMMARY

Two mechanical models have been presented in this paper for structural failure prediction of piping
systems conveying liquids subjected to pressure transients. One model takes into account the axial
fluid–structure interaction (FSI) phenomenon between fluid and pipe motion, whereas the other refers to
an extension of the well-known waterhammer formulation. Both models are described by a system of
non-linear hyperbolic equations which are solved by using a numerical procedure based upon the
operator splitting technique and Glimm’s scheme. To implement Glimm’s method, it is presented the
solution of a 4×4 Riemann problem with discontinuous coefficients. Numerical predictions of both
models are presented and compared, so that the influence of the FSI term on the failure analysis is
focused on. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Liquid transmission lines may be subjected to severe pressure loadings during unexpected
unsteady flow regimes. Depending on pressure surge magnitudes, temperature operating
conditions and piping stiffness, metallic pipes may experience significant inelastic deforma-
tions. On the other hand, it is well-known that excessive inelastic strain is one of the
mechanisms responsible for degradation of metallic materials. Thus, a reliable design of
pipings conveying liquids must take a structural failure analysis into account.

To predict the structural integrity of such piping systems, the classical waterhammer theory
has recently been extended to incorporate the damageable inelastic behaviors of the pipe walls
[1–3]. The irreversible degradation process of the pipe walls has been included in the pipe
material mechanical behavior by means of a continuum damage approach. These works
consider the response in the circumferential direction, but neglect any coupling mechanism
between fluid and pipe motions. Since experimental and analytical works have shown that, in
many practical situations, the uncoupled waterhammer analysis underestimates transient
pressure peaks in linear elastic and viscoplastic tubing [4,5], questions arise as to its suitability
for predicting the integrity of non-linear inelastic piping.

This paper presents a coupled fluid–structure interaction (FSI) analysis in damageable
inelastic tubes to predict structural integrity of pipe walls. The set of non-linear hyperbolic
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differential equations describing the dynamics of the liquid and the pipe motions are coupled
and solved by using a suitable numerical procedure, based upon the operator splitting
technique and Glimm’s scheme. To implement Glimm’s scheme, a closed form solution of a
Riemann problem with discontinuous coefficients for a 4×4 system of equations is presented.
The mechanical model and numerical procedure are then employed to investigate the influence
of the axial FSI on the integrity analysis of pipelines conveying liquids subjected to pressure
transients. To achieve this goal, numerical results based on the coupled and uncoupled
transient models are compared for a specific piping arrangement.

2. GOVERNING EQUATIONS

In the next paragraphs, the equations of the coupled and uncoupled models will be presented.
First, the balance, and then the constitutive equations are presented.

2.1. Balance equations

Piping systems used for liquid transmission are composed of slender members, therefore,
pressure transients in fluid-filled compliant pipes are commonly described by means of
longitudinal wave theories [6]. Consider an inviscid transient one-dimensional compressible
flow confined into a thin-walled pipe (inside radius R and wall thickness e) for which both
fluid and pipe wall motions are relevant. Under these assumptions, the balance equations of
mass and momentum for horizontal fluid flow in Eulerian co-ordinates are

(

(t
(8A)+

(

(x
(8A6)=0, (1.1)

(

(t
(8A6)+

(

(x
(8A62)+A

(P
(x

=0. (1.2)

In the above equations, P, 6, 8 and A are functions of the spatial position x along the pipe
and the time t. They represent the fluid pressure, the axial fluid velocity, the fluid density and
the cross-sectional area of fluid flow, respectively.

The underlying assumptions of small deformations and axisymmetrical plane stress distribu-
tion in the pipe wall are assumed to hold for the pipe, so that its motion is described by the
following momentum equations (in the axial and radial directions) as

8t

(u;
(t

−
(sx

(x
=0, (2.1)

8t Re
(w;
(t

−RP+sue=0, (2.2)

together with the strain displacement relationships o=(u/(x and ou=w/R. In these equations,
the non-vanishing stress components (sx and su) and the pipe wall displacements (u and 6) in
the axial and circumferential directions are functions of x and t, while 8t designates the pipe
density.

To fully couple the fluid and pipe problems, the kinematic relationship between cross-sec-
tional area variations and pipe wall deformations must be imposed. Also, it is necessary to
specify an equation of state for the fluid. Neglecting pipe wall ovalization, the cross-sectional
area is related to the pipe wall deformation by A=Af(1+ou)2, whereas the equation of state
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for the liquid is, neglecting entropy variation, 8=8f exp(P/K). Here, K stands for the
isoentropic bulk modulus of the liquid (assumed to be constant) and the subscript f is used to
designate the undisturbed state from which variations in A and r are measured.

If, apart from the small deformation assumption (ou�1), only slightly compressible fluid
flows (P/K �1) are admitted, the expressions for A and 8 can be linearized and the term 8A
approximated by

8A=8f Af(1+P/K+2ou). (3)

Equations (1)–(3) form the balance equations for the problem. The constitutive assumptions
which will describe the mechanical behavior of the pipe material must be added to these.

2.2. Constituti6e equations

The constitutive theory used in this work has been widely used in several applications and
is derived from a general internal variable theory [7]. It encompasses a great number of
constitutive relations for damageable inelastic solids and allows the description of different
mechanical responses (elastic, plastic, viscoplastic, etc.). In short, the theory is developed by
associating state variables with the different dissipative mechanisms involved in the deforma-
tion process.

For the isothermal evolution of an inelastic damageable solid under small deformations, it
is assumed that its mechanical state is characterized by the set of state variables (o, oa, D, b).
o is the total strain tensor, oa is the inelastic strain tensor. The scalar variable D� [0, 1] is the
isotropic damage which can be interpreted as a local measure of the degradation of the
material induced by deformation. If D=0, the material is virgin and if D=1 the material
locally looses its mechanical strength. In practice, for the sake of security, the local failure is
considered when the variable D reaches a critical value Dcr such that 0BDcrB1. The variable
b is associated with the irreversible changes of the internal state of the material. Here, for the
specific case of the elasto-viscoplastic behavior b= (p, c) represents a set of two internal
variables p and c related to the isotropic and kinematic hardening phenomena, respectively. It
then follows that a complete set of constitutive equations for damageable materials is given by

s= (1−D)C(o−oa), (4.1)

o; a=g, (4.2)

D: =h, (4.3)

b: =l, (4.4)

where the superimposed dot stands for partial derivative with respect to time and g, h and l
are generic functions of the arguments (s, oa, D, b). The specific forms of these functions for
the damageable elasto-viscoplastic behavior are presented in the Appendix.

Equations (4.2)–(4.4) are the evolution equations for the internal variables oa, D and b. In
equation (4.1), s is the stress tensor and C is the classical symmetric fourth-order positive
definite tensor of elasticity. If the elastic behavior is isotropic, then

C=
nE

(1−2n)(1+n)
12�12+

E
(1+n)

14,

where E and n stand for the Young’s modulus and Poisson’s ratio, whereas 12 and 14 represent
the rank two and rank four identity tensors, respectively.
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In the particular case of a thin-walled pipe under a plane stress state, sx and su stand for
the principal stresses. Only two independent components are associated with them, ox

a and ou
a

of the inelastic strain tensor oa. In addition, if the elastic behavior of the pipe material is
assumed to be isotropic, then the constitutive equations can be reduced to

sx=
E(1−D)
(1−n2)

{ox+nou−ox
a −nou

a}, (5.1)

su=
E(1−D)
(1−n2)

{ou+nox−ou
a −nox

a}, (5.2)

o; xa =gx, (6.1)

o; ua =gu, (6.2)

D: =h, (6.3)

b: =l, (6.4)

where gx, gu, h and l are functions of the arguments (sx, su, ox
a, ou

a, D, b).

2.3. Coupled and uncoupled models

In this section, two models (coupled and uncoupled) are derived by combining the basic and
constitutive equations. The uncoupled model is an extension of the classical waterhammer
theory, in which pipe wall mechanical behavior is accounted for in the circumferential direction
only. In addition to this, the coupled model takes the axial FSI between fluid and pipe motions
into account. The uncoupled model can be considered a particular case of the coupled model,
therefore, we shall start by presenting the last one.

By combining equations (1)–(3) along with (5) and (6), a system of ten equations is obtained
for the unknowns (P, 6, u, w, sx, su, ox

a, ou
a, D, b). For many practical situations, however, it has

been shown [8] that the radial pipe wall inertia term in Equation (2.2) might be neglected. In
this case, su= (RP)/e and the system of equations can be reduced to eight equations and eight
unknowns because w can be eliminated from the system.

After performing some algebraic manipulations in Equation (5) and changing the variables
(P, sx) by (c, f), according to

c=
� 1

K*
+

2Rn2

eE(1−D)
�

P−
2n

E(1−D)
sx, (7.1)

f=
Rn

eE(1−D)
P−

1
E(1−D)

sx, (7.2)

the system of equations for the unknowns (c, 6, u; , f, ox
a, ou

a, D, b) is obtained as a function of
the distance x� [0, L ] along the pipe and time t� [0, T ], as

(

(t
(1+c+2ou

a)+
(

(x
((1+c+2ou

a)6)=0, (8.1)

(

(t
((1+c+2ou

a)6)+
(

(x
((1+c+2ou

a)62+cf
2(c−2nf))=0, (8.2)

(u;
(t

+
(

(x
(ct

2f+cf
2jn(2nf−c))=0, (8.3)
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(

(t
(f−ox

a)+
(u;
(x

=0, (8.4)

(ox
a

(t
=gx(c, f, ox

a, ou
a, D, b), (8.5)

(ou
a

(t
=gu(c, f, ox

a, ou
a, D, b), (8.6)

(D
(t

=h(c, f, ox
a, ou

a, D, b), (8.7)

(b

(t
=l(c, f, ox

a, ou
a, D, b), (8.8)

where cf=cf(D), ct=ct(D) and j are given by

cf
2=K*/8f, ct

2= (E(1−D))/8t, j= (R8f)/(e8t),

with

K*=K
,�

1+
(2RK(1−n2))

eE(1−D)
�

.

For simplicity, the notation has been simplified by maintaining the same letters to designate
the functions gx, gu, h and l, although their arguments have been changed due to Equation (7).

The coupled model presented before admits a further simplification when the low Mach
number assumption is taken into account. As shown previously [9], although M�� as D�1
(M= (6/cf) is the Mach number), the low Mach number assumption can still be employed if
metallic tubes are considered. With this additional hypothesis, the convective terms of
Equations (8.1) and (8.2) can be neglected, rendering the following system of equations in the
appropriate form of conservation law,

(U
(t

+
(

(x
(F(U))−W(U)=0. (9)

In the above equation, U�R8, U= (c, 6, u; , f, ox
a, ou

a, D, b)T, is the conserved quantity, F(U)=
F: R8�R8 and W(U)=W: R8�R8 represent, respectively, the flux and source/sink
terms, which have the form F= (6, cf

2(c−2nf), ct
2jn(2nf−c), u; , 0, 0, 0, 0)T,

W= (−gu, 0, 0, gx, gx, gu, h, l)T.
The W term congregates the evolution equations, which are described by the generic

functions gx, gu, h and l.
The pressure transient model characterized by Equation (9), along with the associated

particular forms of U, F and W, is a coupled fluid–structure model, because it not only
accounts for the existence but also the interaction of axial pressure waves in fluid flow and
axial stress waves in the pipe wall. It can be seen from the F components that the main
coupling mechanism of these waves is due to the Poisson’s ratio n. Artificially setting n=0 in
F, the equations that describe the fluid and pipe motions are decoupled. A simpler model
which does not take stress waves in the pipe wall into account will be considered next.

The uncoupled pressure transient model presented below is a particular case of the previous
model. Starting from the coupled model, the uncoupled one is obtained when the axial
momentum equation for the pipe wall is disregarded. In such a case, however, it becomes
necessary to admit a uniform axial distribution of either stress or strain in advance.
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The two most important cases arise when it is assumed that either sx=0 (case a) or
ox=0=ox

a (case b) throughout the pipe. These two cases represent typical pipe support
situations in which either the pipe is anchored with expansion joints or it is anchored
throughout against axial movement [6]. Unlike the coupled model, in both cases only one
independent stress component (su=RP/e) will exist. Although representing different physical
situations, the cases can be described by the same set of equations and in the same form as
Equation (9) if c and cf=cf(D) are redefined as c=1+P/K % and cf

2=K %/8f. Here, K %=K/
[1+ (2RKg)/(eE(1−D))], where g=1 if case (a) is considered, or g=1−n2 if case (b) is
considered. Now, the quantity U�R6, U= (c, 6, ox

a, ou
a, D, b)T and the particular forms of F

and W are given by F= (6, cf
2c, 0, 0, 0, 0)T, W= (−gu, 0, gx, h, l)T.

3. NUMERICAL PROCEDURE

Equation (9) forms a one-dimensional system of non-linear partial differential equations (PDE)
of hyperbolic type. In this paper, Glimm’s scheme, together with the operator splitting
technique, is used to solve Equation (9). Glimm’s scheme [10–14], as well as other methods
[15] which require the solution of the associated Riemann problem, has been employed to solve
such one-dimensional problems because of its proven efficiency in treating discontinuous initial
data and capturing solutions which present first- or zeroth-order discontinuities. For the
problem considered herein, two specific reasons may be cited for using this numerical
approach. The first one is related to the wave propagation velocities af(D) and at(D) (see
Equation (21)) of the problem which may present severe gradients as a consequence of a
localized damage evolution induced by inelastic strains. The other is associated with the
capability of the method in consistently dealing with a discontinuous initial field of damage.
From the physical viewpoint, this situation naturally arises due to initial defects, or when a
stretch of a damaged pipe is replaced with another virgin pipe.

3.1. The operator splitting and Glimm’s scheme

To obtain a numerical solution for Equation (9), consider a uniform partition 0=x1B
. . . xiBxi+1B . . . BxN+1=L of the spatial domain [0, L ], such that Dx=xi+1−xi. The

procedure used to advance the solution from time tn to time tn+1= tn+Dt is based upon the
operator splitting technique. With this technique, the approximation for U(x, t) at time
t= tn+1 and x=xi, Ui

n+1, is obtained by solving

(U
(t

=W(U), (9.1)

U=U0 n+1(x) at t= tn, (9.2)

as follows:

Ui
n+1=U0 i

n+1+DtW(U0 i
n+1). (10)

In the above expression, Ui
n+1 and U0 i

n+1 stand for the approximations of U(x=xi, t= tn+1)
and U0 (x=xi, t= tn+1), respectively.

The field U0 n+1(x)=U0 (x, t= tn+1), used as the initial condition in Equation (9), is the
solution evaluated at time t= tn+1 of the homogeneous hyperbolic problem
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(U0
(t

+
(

(x
(F(U0 ))=0, (11.1)

U0 =Un(x) at t= tn. (11.2)

To proceed with the construction of the numerical solution, it is worth noting that the
quantity U0 �R8 and the flux term F�R8 admit the decomposition U0 = (eU0 , aU0 )T and F=
(eF, aF)T, where aU0 , aF, eU0 and eF�R4 are such that

eU= (c, 6, u; , f)T,

aU= (ox
a, ou

a, D, b)T,

eF= (6, cf
2(c−2nf), ct

2f+cf
2jn(2nf−c), u; )T,

aF=0.

In view of this, Equation (11) can be rewritten as

( eU0
(t

+
(

(x
(eF(eU0 , aU0 ))=0, (12.1)

(aU0
(t

=0, (12.2)

U0 = (eUn(x), aUn(x))T at t= tn. (12.3)

Equation (12) is solved numerically using Glimm’s scheme [16]. As a first step for employing
Glimm’s scheme, the initial data are assumed to be approximated by piecewise constant
functions, as

U0 (x, tn)#Ui
n= (eUi

n, aUi
n)T= (eU(xi, tn), aU(xi, tn))T, (13)

for x� (ai, bi) and 15 i5N+1, where

ai=
!x1,

xi− (Dx)/2,
if i=1
if 1B i5N+1

,

bi=
!xi+ (Dx)/2,

xN+1,
if 15 iBN+1
if i=N+1

.

The above approximations give rise, for each two consecutive steps i and i+1, to an initial
value problem known as the Riemann problem, characterized by Equations (12.1) and (12.2),
with initial data given by

U0 (x, tn)= (eU0 , aU0 )T(x, tn)=Í
Ã

Ã

Á

Ä

(eUi
n, aUi

n)T

(eUi+1
n , aUi+1

n )T

for −�BxBxi+
Dx
2

for xi+1−
Dx
2
BxB�

, (14)

U. (x, t)= (eU. (z), aU. (z))T denotes the generalized solution of Equation (12.1), (12.2) and (14),
with z= (x− (xi+0.5Dx))/(t− tn), eU. (z)given by Equation (25) and aU. (z) given by

aU. (z)=
!aUi

n,
aUi+1

n ,
if zB0
if z\0

,
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Glimm’s approximation for Equation (11) (or (12)) at time tn+1 is obtained by introducing a
sequence of equidistributed random numbers {un}, un� (0, 1), so that

U0 n+1(x)#U0 j
n+1=U. (x=xi+unDx, t= tn+1), (15)

for x� (ai, bi) and 15 i5N, with j defined by

j=
!i,

i+1,
if un51/2
if un\1/2

.

In the procedure, the time instant tn+1 must be such that the Courant–Friedrichs–Levy
condition [16] is satisfied, i.e.

tn+1− tn=Dt5
Dx

2�l �max

, (16)

where �l �max is the maximum (in absolute value) propagation speed, taking into account the N
Riemann problems at time tn.

The procedure can be repeated throughout until a desired time of simulation has been
reached or the damage variable has reached its critical value Dcr. Convergence features of
Glimm’s scheme, which is first-order-accurate in time, can be found in Chapter 19 of
Reference [16].

3.2. The associated Riemann problem

The Riemann problem (centered at x=x0) associated with Equation (12) is an initial value
problem of the form [16]

( eU0
(t

+
(

(x
(eF(( (eU0 , x))=0, (17.1)

eU0 (x, t= to)=
!eUL

eUR

if xBxo

if x\xo

, (17.2)

with discontinuous coefficients cf and ct, such that

(cf, ct)=
! ((cf)L, (ct)L)= (cf(DL), ct(DL))=constants

((cf)R, (ct)R)= (cf(DR), ct(DR))=constants
if xBxo

if x\xo

. (17.3)

In the above expressions, eUL= (cL, 6L, u; L, fL)T and eUR= (cR, 6R, u; R, fR)T are arbitrary
constant states, DL and DR are arbitrary constants, which are all defined at the left and at the
right of x=xo and at t= to. With relation to the scheme presented in Section 3.1, xo and to

refer to the position xi+0.5Dx and the time instant tn, respectively.
The above problem is classified in the literature as a generalized Riemann problem because

the flux term depends on x. In this case, such a dependence arises due to the splitting adopted
in Section 3.1, along with the dependence on D of the coefficients cf=cf(D) and ct=ct(D)
which are present in eF.

The flux function eF(eU0 , x) has a sharp discontinuity at x=xo and is independent of x for
xBxo and x\xo. Moreover, it is linear on eU0 so that the function eF(( can be redefined with
another function, eF( : R4�R4, such that

eF(( (eU0 , x)= eF( (eU0 )=
!AL

AR

eU0
eU0

for xBxo

for x\xo

, (18)

where AL=A((cf)L, (ct)L) and AR=A((cf)R, (ct)R).
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In the above expressions, A=A(cf, ct)�R4×4 is the Jacobian matrix A=deF( /deU0 , which
is given by

A=Ã
Ã

Ã

Æ

È

0
cf

2

jcf
2

0

1
0
0
0

0
0
0
1

0
−2n

ct
2−2n2jcf

2

0

Ã
Ã

Ã

Ç

É

.

Equation (17) is invariant under the scale transformation x %=a(x−xo) and t %=a(t− to),
a\0, therefore, its solution depends only on the ratio z= (x−xo)/(t− to). In other words,
it is of the form eU0 (x, t)= eU. (z), t\ to, where eU. : R�R4 is a piecewise continuous func-
tion. For simplicity and without losing generality it is now assumed that xo=0 and to=0.

The (generalized) solution of this particular problem is constructed by connecting the left
state eUL to the right state eUR through intermediate states which should be determined.
Due to the linearity of eF( , these states must be connected by shocks waves (contact
discontinuities). Each shock must satisfy the Rankine–Hugoniot jump condition [16], ex-
pressed as

s [eU0 ]= [eF( (eU( )], (19)

where [x ] represents the jump of x across adjacent states and s stands for the propagation
speed of the shock.

For either zB0 or z\0, Equation (19) gives

(A−s1)[eU0 ]=0. (20)

[eU0 ]"0, therefore, it follows that s is the eigenvalue of A, s=li (i=1, . . . , 4), which are
(in crescent order)

l1= −atB−af=l2B0Bl3=afBat=l4, (21)

where at= āt(cf, ct)=at(D) and af= āf(cf, ct)=af(D) are given by

at=
!1

2
(v2+ (v4−4cf

2ct
2)1/2)

"1/2

, af=
!1

2
(v2− (v4−4cf

2ct
2)1/2)

"1/2

,

with v2=cf
2+ct

2+2n2jcf
2.

For zB0, (AL−s1)[eU0 ]=0 implies s= − (at)LB0 or s= − (af)LB0. On the other hand,
for z\0, (AR −s1)[eU0 ]=0 implies s= (af)R\0 or s= (at)R\0, where

(at)L= āt((cf)L, (ct)L)=at(DL), (at)R= āt((cf)R, (ct)R)=at(DR),

(af)L= āf((cf)L, (ct)L)=af(DL), (af)R= āf((cf)R, (ct)R)=af(DR).

For both zB0 and z\0, s corresponds to the eigenvalues li (i=1, . . . , 4), in the
respective regions of the x– t plane. Moreover, because (A−s1)) has rank equal to three
for every s=li (i=1, . . . , 4), the dependent line can be eliminated and Equation (20) can
be written as

B[eU0 ]=0, (22)

where B=B(cf, s)�R3×4 has the form
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B=Ã
Æ

È

s
0
0

−1
(s2−cf

2)
0

0
2ncf

2

−1

0
0
0
Ã
Ç

É
.

at(D)\af(D), therefore, for all D� [0, 1), the solution of the problem is constructed by
connecting the left state eUL to an intermediate state eUL*, with the shock speed s= − (at)L (see
Figure 1);

eUL ---�
s= − (at )L eUL* [B((cf)L, s= − (at)L)(eUL− eUL*)=0. (23.1)

Another intermediate state eUL** is connected to the state eUL*, with the shock speed
s= − (af)L (see Figure 1);

eUL* ---�
s= − (af )L eUL** [B((cf)L, s= − (af)L)(eUL**− eUL*)=0. (23.2)

Similarly, an intermediate state eUR* is connected to the right state eUR through the shock
speed s= (at)R (see Figure 1);

eUR* ---�
s= + (at )R eUR[B((cf)R, s= + (at)R)(eUR− eUR* )=0. (23.3)

Finally, the states eUR* and eUR** are connected with the shock s= (af)R (see Figure 1);
eUR** ---�

s= + (af )R eUR* [B((cf)R, s= + (af)R)(eUR*− eUR**)=0. (23.4)

To complete the solution, the states eUL** and eUR** must be connected. This is done by
imposing a stationary shock (a shock with speed s=0) at x=0 with Equation (19), as
illustrated in Figure 1;

eUL** -�
s=0 eUR** [AR

eUR**−AL
eUL**=0. (23.5)

When Equations (23.1)–(23.5), which connect the states eUL� eUL*� eUL**� eUR**� eUR*�
eUR are grouped together, a system of algebraic equations for the unknown U=
(eUL*, eUL**,eUR**,eUR* )T�R16, eUL*= (cL*, 6L*, u; L*, fL* )T, eUL**= (cL**, 6L**, u; L**, fL**)T,
eUR**= (cR**, 6R**, u; R**, fR**)T and eUR*= (cR* , 6R* , u; R* , fR* )T, is obtained as

AU=B, (24)

where A�R16×16 and B�R16 are

Figure 1. Solution of the Riemann problem in the x– t plane.
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A=Ã
Ã

Ã

Æ

È

BL(s= − (at)L)
BL(s= − (af)L)

04×4

03×4

03×4

03×4

−BL(s= − (af)L)
−AL

03×4

03×4

03×4

03×4

AR

−BR(s= (af)R)
03×4

03×4

03×4

04×4

BR(s= (af)R)
BR(s= (at)R)

Ã
Ã

Ã

Ç

É

,

B= (BL(s= − (at)L), 03, 04, 03, BR(s= + (at)R))T.

In the above expressions, BL(s)=B(cf= (cf)L, s) and BR(s)=B(cf= (cf)R, s) with 03×4, BL and
BR�R3×4 and 04×4, AL and AR�R4×4.

By solving Equation (24), the solution (unique) of the generalized Riemann problem is
obtained, no matter how distant are the left and right states, and it is expressed as

eU. (z)=Í
Ã

Ã

Ã

Ã

Á

Ä

eUL,
eUL*,
eUL**,
eUR**,
eUR*,
eUR,

for −�BzBs= − (at)L

for s= − (at)LBzBs= − (af)L

for s= − (af)LBzBs=0
for s=0BzBs= + (af)R

for s= + (af)RBzBs= + (at)R

for s= + (at)RBzB+�

, (25)

Figure 1 presents the regions in the x– t plane where the above solution is defined.
With respect to the solution presented before, it is worth mentioning two important features.

When, in particular, DL=DR, the classical Riemann problem is recovered for which (cf)L=
(cf)R=cf, (ct)L= (ct)R=ct, (af)L= (af)R=af and (at)L= (at)R=at. As a consequence, only
three intermediate states will exist eUL*, eU** and eUR*, because eUL**= eUR**= eU**.

The other relevant feature is that the same procedure may be applied to obtain the solution
for the uncoupled model. In fact, this solution has already been presented in the article [1].

3.3. Boundary conditions

In the context of the numerical procedure presented before, boundary conditions are
imposed in Glimm’s scheme in an approximated fashion. To see how it is implemented, the
boundary conditions

P(x=0, t)=Po(t) and P(x=L, t)=Po(t), t� [0, T ], (26.1)

u; (x=L, t)=0 and u; (x=L, t)=0, t� [0, T ], (26.2)

are considered for the problem in the next section.
In view of the change of variables (7), the boundary conditions (26.1) are expressed as

rf c f
2(D=0, t)(c(x=0, t)−2nf(x=0, t))=Po(t), t� [0, T ],

rf c f
2(D=L, t)(c(x=L, t)−2nf(x=L, t))=Po(t), t� [0, T ].

For a generic time instant tn+1= tn+Dt, the boundary conditions (26.1) and (27) are imposed
after advancing Dt in time in the procedure presented in Section 3.1, so that the above
conditions are approximated by
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Í
Ã

Ã

Á

Ä

c1
n+1=c

�
0BxB

Dx
2

, tn+1�=Po(tn+1)/(8f c f
2(D1

n+1))+2nf1
n+1

u; 1
n+1=u; �0BxB

Dx
2

, tn+1�=0

and

Í
Ã

Ã

Á

Ä

cN+1
n+1 =c

�
L−

Dx
2
BxBL, tn+1�=Po(tn+1)/(8f c f

2(DN+1
n+1 ))+2nfN+1

n+1

u; N+1
n+1 =u; �L−

Dx
2
BxBL, tn+1�=0

,

where NDx=L, D1
n+1=D(0BxBDx/2, tn+1), f1

n+1=f(0BxBDx/2, tn+1), DN+1
n+1 =

D(L−Dx/2BxBL, tn+1) and fN+1
n+1 =f(L−Dx/2BxBL, tn+1).

4. NUMERICAL EXAMPLE

As a first step to understanding the influence of the FSI coupling mechanisms on the structural
integrity of piping systems, a relatively rigid pipe arrangement is considered. Numerical
predictions of both models are then compared and analyzed.

Among other piping systems, reactor piping systems are known to be susceptible to
viscoplastic deformations, due to combinations of transient pressure loadings and high
operating temperatures. In the particular case of liquid metal fast breeder reactors, typical
sources of pressure transients are the sodium–water reaction and a core disruptive accident.
Both kinds of accidents can be well-represented by explosive pressure pulses of short duration
[17,18].

Motivated by such accidents, the transient response of a single liquid-filled pipe of length L
that is anchored and subjected to an impulsive pulse of pressure at its ends will be investigated.
For this purpose, a senoidal-shaped pressure pulse will be considered so that the appropriate
boundary conditions are

P(x=0, t)=P(x=L, t)=Po(t)=
!Pm sin(p/t*)

0,
if 05 t5 t*
if t\ t*

,

where Pm=6 MPa represents the pressure pulse amplitude and t*=2 ms is its duration. The
pipe is a thin-walled tube filled with sodium at 600°C (rf=832 kg m−3 and K=2.31 GPa).
It is 10 m long, has an inside diameter of 73 mm and a wall thickness of 1.63 mm. The pipe
material is an AISI 316 L stainless steel, the constitutive coefficients of which at 600°C are [7]
E=130 GPa, n=0.3, sp=6 MPa, k=150 [GPa s−1], b=80 MPa, d=10, n=12, a=17
GPa, 8=300, So=2 kPa, and 8t=7800 Kg m−3.

As initial conditions for the simulation, the initial flow velocity is considered, with the
pressure and axial stress fields at zero. In addition, it is assumed that the piping has never been
subjected to plastic deformations, nor to any kind of degradation, so that the plastic strains,
the damage and the other internal variables are set equal to zero before the accident takes
place. In this context, the appropriate initial conditions are
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Figure 2. Pressure response versus time at x/L=0.5 for different mesh sizes (N=51, 101 and 201).

P(x, t=0)=0, 6(x, t=0)=0, x� [0, L ],

ou
a(x, t=0)=0, ox

a(x, t=0)=0, x� [0, L ],

b(x, t=0)=0, D(x, t=0)=0, x� [0, L ].

For the coupled model, apart from the initial conditions presented before, consider the
conditions

sx(x, t=0)=0, u; (x, t=0)=0, x� [0, L ],

u; (x=0, t)=0, u; (x=L, t)=0, x� [0, T ].

Before presenting some interesting results, it is important to mention that a number of
numerical experiments have been performed to check the precision and accuracy of the
proposed numerical technique. Convergence tests have been carried out for the elasto-vis-
coplastic behavior by considering different mesh sizes (N=51, 101, 201). The results obtained
are depicted in Figure 2, which shows the pressure as a function of the time at the spatial
position x/L=0.5. It can be seen, from N=51 to 101 the solutions tend to converge to that
with N=201. With N=101 and 201 there is no significant differences between the responses.

In what follows, the transient response of the system will be analyzed based upon both
coupled and uncoupled models.

Pressure response as a function of time and position along the pipe is illustrated in Figure
3 for both uncoupled (Figure 3a) and coupled (Figure 3b) models. After t=0, pressure pulses
generated at x=0 and x=L move towards the pipe midpoint where superposition takes place.
Afterwards, these pulses will be reflected at pipe’s ends until steady state has been reached
(Figure 3b) or piping rupture has occurred (Figure 3a). According to the predictions of the
uncoupled model (Figure 3a), piping rupture takes place at t=5.4 ms when pressure pulses are
superimposed for the first time. On the other hand, for the coupled model (Figure 3b), even
after the third interaction of the pressure pulses in the midpoint of the tube, piping rupture has
not occurred. In addition to pressure pulse attenuation, it is interesting to note the presence of
second-order perturbations in the response of the coupled model (Figure 3b) after t=10 ms
due to the Poisson coupling.
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To obtain a better idea of the damage evolution along the pipe according to both models,
Figure 4 (for the uncoupled model) and Figure 5 (for the coupled model) show the spatial pressure
(left column) and damage (right column) fields at different time instants. Since pressure amplitude
of each individual pulse is not capable to induce pipe wall plastic deformations, it can be observed
that for both models, pressure pulses propagate without suffering attenuation or dispersion until
t#5 ms. Thus from t=0 ms to that instant, there has been no damage evolution, as it can be
seen in the curves D×x/L for t=2.95 and 3.93 ms in Figures 4 and 5.

At t#5 ms, when pressure pulse superposition occurs for the first time, the resulting pressure
amplitude induces (in both models, Figures 4 and 5) a damage of :D=0.1 near the midpoint
of the pipe. It should be noticed that, due to the viscoplastic behavior, the resulting pressure
amplitude (of :8 MPa) is less than the sum of the amplitudes of the pulses. After t#5 ms,
the damage evolution predictions of the uncoupled and coupled models become different. It can
be observed that for the uncoupled model (Figure 4) the damage jumps quickly from D=0.1
at t=4.91 ms to D=0.85 at t=5.37 ms. For the coupled model (Figure 5), however, the damage
increases from D=0.1 to 0.25 during the same time interval.

Figure 3. Pressure 3D response. a) Uncoupled model. b) Coupled model.
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Figure 4. Pressure and damage versus position along the pipe for several time instants. Uncoupled model.
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Figure 5. Pressure and damage versus position along the pipe for several time instants. Coupled model.
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Figure 6. Pressure and damage versus position along the pipe for several time instants. Coupled model. (Continued
from Figure 5).
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The remaining sequence of damage and pressure fields shown in Figure 5 is depicted in
Figure 6. It can be seen in Figure 6 that the damage evolution takes place more slowly than
that predicted by the uncoupled model.

The piping only experiences significant damage after 23 ms. However, the cumulative
damage is not enough to induce piping rupture. When compared with the uncoupled model,
the coupled model predicts a gradual damage evolution since it considers an additional
direction (the axial direction) to dissipate the strain energy.

5. CONCLUSIONS

Two models (a coupled and an uncoupled), along with a numerical procedure based upon
Glimm’s scheme and the operator splitting technique, have been proposed to predict the
structural integrity of liquid transmission lines subjected to hydraulic transients. The coupled
model takes into account the axial FSI, whereas the uncoupled one refers to an extension of
the well-known waterhammer formulation. By comparing the numerical results of both
models, it has been shown that the uncoupled model overestimates the level of degradation in
the pipe. Such a conservative prediction, along with its simplicity, enables the uncoupled model
to be used for preliminary integrity analyses of relatively rigid piping structures. Based on
previous work [5], similar results should not be expected for flexible piping arrangements.
Current research is underway to investigate this in detail.
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APPENDIX A. EVOLUTION LAWS FOR THE DAMAGEABLE
ELASTO-VISCOPLASTIC BEHAVIOR

The expressions of the functions (g, h, l) which characterize the evolution laws (Equations
(4.2)–(4.4)) are

g=
3
2

1
(1−D)

# f
k(1−D)

$n (s+Bc)dev

J(s+Bc)
,

h=
BD

So

1
(1−D)

# f
k(1−D)

$n

,

l=
�# f

k(1−D)
$n

, g−
8BchSo

aBD

�
,

where �x�=max{0, x},

f=J(s+Bc)+Bp−sp(1−D),

J(s+Bc)=
�3

2
(s+Bc)dev(s+Bc)dev

�1/2

,
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Bp= −b(1−exp(−dp)),

Bc= −ac,

BD=
1
2

(C(o−oa)) · (o−oa),

with (s+Bc)dev being the deviatoric part of (s+Bc) and a, b, d, k, n, sp, 8 and So are the
material parameters.
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